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Abstract

The human visual system often correctly interprets a color
cast in the scene as being caused by the illuminant. This
awareness typically allows us to discount the illuminant
when judging the color of an object. In photofinishing and
camcorder applications, machines are expected to perform
the same type of discounting of the illuminant. The compu-
tational issues involved turn out to be very difficult. This
paper will examine the assumptions behind current color
constancy models and review some of the current automatic
color balance algorithms for photographic printers and
camcorders.

Introduction

Studies related to human color constancy can be traced back
more than one hundred years.1 Several models have been
proposed to explain how it might work, but none has
produced satisfactory results for complex images. Recent
work on computer vision offers additional algorithms for
very limited lighting and reflection surfaces. In
photofinishing applications, a similar problem is known as
color exposure control, and in electronic imaging it is
known as white balance control. More than 50 years of
research on these consumer products has produced fairly
respectable results. Amazingly, all this industrial achieve-
ment is accomplished with only a very small number of
insightful ideas. In this paper we will attempt to briefly
summarize the major models and ideas that have been
developed so far.

Color Constancy by Humans

Although it may not be agreed to by all experts, we will
tentatively propose that there are two major mechanisms
that are known to maintain approximate color constancy
across different illuminations: chromatic adaptation and
computational normalization. The chromatic adaptation
refers to the gain control of the neurons that process the
color signals, while the computational normalization refers
to the parallel comparison and computation on all the
elements in the visual field to derive the perceptual corre-
lates of the final perceived colors in our mind. This simple
description has some obvious difficulties. For example, we
do not know all the neurons that process color signals and
how they adjust their gains. Also, one could say that the
computational normalization is part of the neural gain
control. However, experimental evidences suggest that the
two mechanisms can be differentiated at least by their speed
of action. Although certain visual threshold adjustment2

takes place in less than 50 ms, chromatic adaptation requires
several seconds to come to a stable color appearance.3 On
the other hand, the computational normalization is accom-

plished in “a flash of light”.4 Brill and West thus propose
chromatic adaptation and color constancy as a possible
dichotomy.5 However, we consider that both chromatic
adaptation and computational normaliza-tion work together
to achieve the stable perception of colors.

If we view an indoor scene under one illuminant (say,
a fluorescent light) for a long time, and then the illuminant
is suddenly changed to a tungsten light, our perception of
the object colors is temporarily unstable but they do not
become unrecognizable. Gradually, color appearance be-
comes stable, although the object colors do not look exactly
the same as before. Even though color constancy is only
approximate,6,7 object colors are generally recognizable.8

We also have a clear sense of the qualitative change in the
illuminant color. This sense allows us to discount the
chromatic bias imposed by the illuminant.6,8 This raises the
important distinction between the “sensation” and the “per-
ception” of color, the latter being the illuminant-discounted
results of the former. Roughly speaking, the sensation is
affected by the chromatic adaptation and the perception is
mainly determined by the computational normalization.

Aspects of Color Constancy
Although the major focus of color constancy research

has been on the “constancy” of perceived surface colors
under change of illumination (either at different times or in
different eyes), there are other related issues that need closer
examination within the framework of color constancy.
First, an extended object almost always receives different
illumination on different parts of its surface, and yet this
subtle variation of surface color is rarely noticed if it is
noticeable at all. The perception of a constant color (mostly
hue and saturation) across a homogeneous object surface is
in itself a manifestation of color constancy in the spatial
domain. For example, a curved surface under the sun will
receive proportionally more direct sunlight on the part that
faces the sun than the part that faces away from the sun. In
the extreme case, with a careful examination, one can see
that the more “sunny” part is indeed more yellowish that the
less sunny part. The fact that it takes very careful examina-
tion to see the color variation across a surface means that the
subtle change in color is suppressed by cognition, i.e., the
color perception is dominated by the object and form
perception. The fact that it is observable means that the
color sensation is not normalized out completely. Secondly,
as we move around an object and look at it from different
angles, the perceived color of the object remains stable
although the spectrum of the light coming into the eyes has
undoubtedly changed because of local variation in illumi-
nation and mutual reflection from the surrounding surfaces.
This temporal stability is another manifestation of color
constancy in the temporal domain when no major change in
the main light source has occurred.
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The other issue regarding color constancy is the ques-
tion of what aspects of the surface colors are “perceived as
constant” under different illuminants. One can argue that
the spectral reflectances are independent of the illumina-
tion, and the computational problem of color constancy is to
recover or estimate the surface spectral reflectances.9 Alter-
natively, one can assume a fixed canonical light and the
problem of color constancy is to compute the transforma-
tion from the tristimulus values (r, g, b) under one illuminant
to the tristimulus values (rc, gc, bc) under the canonical
light.10 This view is similar to the working assumption in the
exposure control algorithm for photographic printers11, 12

that the printer corrects the image so that it will be printed
as if it were taken under a standard illuminant, say D55. Still
another view of color constancy maintains that the goal is to
recover three reflectance factors13 (the surface reflectance
relative to that of a perfect white diffuser under the same
lighting and imaging geometry).

In order to account for human color constancy, all the
models still have to explain how the computed quantities,
the spectral reflectances, the transformed tristimulus val-
ues, or the reflectance factors, can be mapped to the per-
ceived colors.

The von Kries Coefficient Law
Almost all our sensory mechanisms adapt to the pre-

vailing level of stimulus and change their operating range
accordingly. The L, M, and S cones in the human retina
adjust their gains or operating range according to the overall
intensity of the incident light. Adjustment of sensory re-
sponse can take the form of subtractive or multiplicative
operations. After considering the relevant data, von Kries
proposed that to a first-order approximation, chromatic
adaptation works as a multiplicative gain control. If the
sensor response to a diffuse white target under illuminant A
is wA and that under illuminant B, wB, then any sensor
response under B, rB, is related to that under A, rA, by:

 rB = (
wB
wA

)rA.

This type of adaptation is called the complete von Kries
adaptation, because the sensor responses to the same white
object under two different illuminants are adjusted to be
identical. Experimental results show that our chromatic
adaptation is neither complete,14 nor sensor independent,
nor entirely multiplicative.1

As our knowledge on the neural processing increases,
it becomes clear that along the visual pathway from cones,
bipolar cells, ganglion cells, LGN, V1, V2, and V4, and to
higher cortical areas,15,l6 there are many other sites in which
gain control is likely to happen (e.g., see Ref. 17). It is not
surprising that von Kries simple law can not describe the
whole picture. In fact, it is surprising that the law accounts
for the major effect in most cases. One of the CIE recom-
mended color spaces, CIELAB, uses the coefficient law to
account for the chromatic adaptation. Variations of von
Kries law have been described very well in Refs. 1 and 18-
20. Other types of chromatic adaptation models can be
found in Refs. 21 and 22.

The Retinex Theory
In 1971, Land and McCann13 proposed a retinex theory

of how colors are computed in the human visual system. The

theory contains three major steps: (1) the signal is indepen-
dently processed for each of the three receptor types to
remove the illumination gradient and recover the correct
ratio of reflectances; (2) the individual maximum in each
receptor band is used to normalize all other reflectances in
the band; and (3) the triplet of the normalized reflectances
is used to determine the perceived color. Land has since
modified the details of the theory several times.23 Based on
his many interesting experiments,24 McCann still considers
the major concept that all the reflectances in a wavelength
band (as defined by a photoreceptor type) are normalized by
the maximum in that band to be valid, although there has
been some disagreement from other experiments.10,25

Color Appearance Model
Recently, Hunt26 and Natayani, et al.20 proposed two

very comprehensive models for predicting color appear-
ance under various illuminations. In particular, Hunt’s
model has been tested very extensively (see Ref. 27 and the
references therein), and it has since been revised to better
match the experimental data for widely different viewing
conditions and display media.

Computational Models for Color Constancy
In the models discussed so far, the illuminants are

assumed to be known. The models then attempt to explain
how the colors under different illuminants can be calcu-
lated. But, how can the human visual system know the
illuminant if it is not directly visible in the scene? This is, in
fact, the key problem in the consumer product applications.

The first concrete idea was proposed by Evans12 in
1946 for photographic printer application. He proposed that
the color from the entire image should integrate to gray.
This is called the gray world assumption. The same idea is
later proposed again by Buchsbaum28 for object color
perception. The gray world assumption is intuitively odd
because an image of an object in front of a large green grass
field will more likely integrate to green rather than gray. Its
main appeal is its statistical property of being not too wrong
most of the time. It turns out that after long years of
modifications and statistical optimization, the modified
gray world model has become the best color balance algo-
rithm for printers and cam-corders. This will be discussed
further in the next section.

Relying on statistical properties is not the only way to
solve the illuminant color estimation problem. We can also
look for the regularity in the physical process of reflection. For
example, we can take advantage of the fact that the reflection
component at the air-material interface of most inhomoge-
neous materials is usually nonselective (i.e., all visible wave-
lengths are reflected more or less equally). The light reflected
from such a surface is an additive mixture of the unmodified
illuminant spectrum and the spectrum modified by the
pigments or dyes in the object. The chromaticity loci of the
reflected light from different parts of the surface will be a
straight line segment pointing to the illuminant chromatic-
ity. With more than one surface in the image, it is possible
to estimate the chromaticity of the scene illuminant from the
intersection point of all the line segments in the chromaticity
diagram.29 It should be pointed out that a visible specular
reflection is not required because the usual presence of the
interface reflection component in object surfaces will create a
converging “star” pattern in the chromaticity histogram. How-
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ever, the interface reflection information does not seem to be
used very effectively by the human visual system.30

Another idea9 that has attracted a lot of attention is
based on the observation that most illuminant spectra and
reflectance spectra can be well approximated by a small
number of basis vectors.31-33 With sufficient sensor classes
or other constraints, both the illuminant and the surface
spectra can be estimated.9,10,34 However, the assumption
that a small number (2-3) of basis vectors is sufficient and
the goal that the visual system should recover the spectral
information of the light and surface are probably not very
realistic as a model of the human color constancy.10

Color Constancy by Machines

Among the major applications that require machine color
constancy algorithms are photofinishing printing and video
camcorders. A 1993 market survey showed that about 16
billion film exposures were made in the year and about 3
billion square-feet of photographic paper were used to print
images. Because a print is only a small part of the visual
field and color constancy mechanisms are mostly con-
trolled by the print viewing surrounds, the color balance
error by the printer algorithm is more noticeable for the
reflection prints than for the transparencies. Therefore,
automatic color balance and exposure control algorithms
for photofinishing printers have been the subject of intense
studies for a long time mainly because of the very practical
need of high speed printing for consumer images.

In addition to the basic color constancy problem of the
human visual system, a photographic color printer has to
deal with many other unknown causes of color variations
not related to the scene illuminants. Among them are the
scanner/printer calibration, the film manufacturing/pro-
cessing variability, the film stock keeping, the latent image
keeping, and camera filtering. It should be recognized that
these factors are considered in the algorithm designs. For
example, it is important to decouple the front-end and back-
end calibration issues from the true color balance issues. For
ease of calibration, it is also important to make sure that the
scanner measures the film “printing density” with the same
spectral response as the printer lamp, the color filters, and
the paper combined. However, because the printing density
is only indirectly related to the physical quantities in the
scene, algorithms that work in the printing density domain
are not working directly on the relevant quantities.

Another factor worth pointing out is that almost all
color balance algorithms now in consumer products rely on
statistical properties of natural images. Statistical optimiza-
tion also means that algorithmic learning is a desirable
feature. As the season and the region vary, the statistical
parameters also ought to change.35 An ideal commercial
algorithm should be adaptive to the changes in the statistical
property of the input image population. Automatic learning
is a feature not yet fully explored in the existing algorithms.

The Integration-to-Gray Algorithm
In 1946, R. M. Evans filed a patent application, teach-

ing a method for automatic exposure control (color and
density balance) in photographic printers for color negative
or positive transparency films. The color correction is
achieved by “adjusting the intensity of the printing light so

that when integrally passed through said transparency, it
has the same printing characteristics as light which prints
substantially as gray” (Ref. 12, lines 32-36, column 4).
Realizing that if there is a dominant color in the image, the
integration to gray method will result in too much correc-
tion, he further said in the patent: “It may not always be
desirable to effect a correction to an exact neutral gray, but
sometimes the correction need only be carried toward the
neutral point, or in the direction of gray.” (Ref. 12, lines 15-
19, column 4).

The idea must not have been very convincing to the
examiner, because it took more than five years before the
patent was issued. However, the idea was very simple to
implement and apparently relatively effective. According
to a recent study, the method produces a “satisfactory” print
about 70% of the time.36 The integration to gray method was
known in the trade as the large area transmission density
(LATD) method. It quickly became the backbone of almost
all of the color balance algorithms used in printers and
camcorders. Bartleson11provided a very detailed review on
the development and refinement of the LATD method
before 1956. He also elaborated on the optimal correction
level that Evans referred to in his patent.

The complexity of the early algorithms was limited by
the then available sensors, electronic components, and
analog computing machinery. The two major problems of
the LATD algorithm were quickly recognized: (1) it fails
when the image contains large areas of some saturated color
(in the US, this is called subject failure; in Europe, it is called
dominant color); and (2) it is biased toward low density
areas (or underexposed areas). For example, in the negative
of a flash picture, the dark background is weighted more
heavily than the main subjects in the foreground.

Various solutions have been proposed to reduce the
error magnitudes when the above two problems occur. The
error in the dominant color (or subject failure) problem is
reduced by: (a) using different correction levels: “If the
LATD of a negative is only slightly different from typical
it is assumed that the difference is caused by some unwanted
film variability, and it is given a high-percentage correc-
tion. In contrast to this, if the LATD color of the negative is
significantly different from typical, it is declared to be an
atypical negative.... and they are printed at low correction,
allowing the color to remain in the print.” (Ref. 37, page
4.17); (b) excluding saturated colors38 (also when they are
outside of the middle range of the luminance signals39); (c)
sampling along edges in the image40-41 or using weighted
average according to spatial contrast42; (d) using averages
from multiple frames43; (e) using between-frame similar-
ity44,45; (f) using color space classification46; (g) changing
color balance as a function of over- or under- exposures37,47;
and (h) using a priori knowledge of the light source distri-
bution.48,49 The error in the low-density bias problem is
reduced by: (a) throwing away under-exposed regions43;
and (b) using geometric weighting (the center portion of the
image is more likely to contain the main subjects of interest)
and other heuristic rules.37,50

In addition to the average density, other simple features
such as the minimum density, the maximum density, and
other various combinations are used in the regression opti-
mization of the algorithm performance.51-54 An interesting
variation is the histogram normalization method proposed
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by Alkofer,40 which assumes that randomly sampled image
densities have a normal distribution and at every percentile
of the red, green, and blue distribution the densities should
be printed neutral.

Scene Classification and Object Recognition
As memory devices become cheaper and the comput-

ing processors become more and more powerful, algo-
rithms are designed to be more intelligent in an attempt to
recognize objects and scene types in the images and adjust
color balance accordingly. For example, detecting faces
and skins55,56 in the images can be used to help produce a
pleasing skin tone. Detection of sky, backlit, flash, snow, or
beach scenes will allow the color and density  balance
algorithm to adjust its estimated correction, depending on
the scene types. Computer vision and image understanding
research will play a major role in this effort.

Discussion

There are comparisons of human and machine color constancy
that are quite interesting to make: (1) the incomplete von Kries
adaptation is similar to the correction level concept in the
printer algorithms; and (2) human color constancy works
better along the yellow-blue illuminant direction,57 while the
printer color balance algorithms are also designed the same
way. This is because errors occur less frequently and are less
noticeable along that direction, and, therefore, we can afford to
correct them more aggressively.
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